
Learning the scope of negation in biomedical texts

Blind

Abstract

In this paper we present a machine learning
system that finds the scope of negation in
biomedical texts. The system consists of two
memory-based engines, one that decides if the
tokens in a sentence are negation signals, and
another that finds the full scope of the nega-
tion signals. Our approach to negation detec-
tion differs in two main aspects from exist-
ing research. First, we focus on finding the
scope of negation signals, instead of determin-
ing whether a term is negated or not. Second,
we apply supervised machine learning tech-
niques, whereas most existing systems apply
rule-based algorithms. As far as we know, this
way of approaching the negation scope finding
task is novel.

1 Introduction

In this paper we present a machine learning sys-
tem that finds the scope of negation in biomedical
texts. The system consists of two memory-based en-
gines, one that decides if the tokens in a sentence are
negation signals (i.e., words indicating negation),
and another that finds the full scope of these nega-
tion signals. Finding the scope of a negation signal
means determining at sentence level which words
in the sentence are affected by the negation. Our
approach differs in two main aspects from existing
research. First, we focus on finding the scope of
negation signals, instead of determining whether a
term is negated or not. Second, we apply supervised
machine learning techniques, whereas most existing
systems apply rule-based algorithms.

Predicting the scope of negation is important in
information extraction from text for obvious rea-
sons; instead of simply flagging the sentences con-
taining negation as not suited for extraction (which
is currently the best that can be done), correct se-
mantic relations can be extracted when the scope of
negation is known, providing a better recall.

Not being able to recognize negation can also
hinder automated indexing systems (Mutalik et al.,
2001; Rokach et al., 2008). As Mutalik et al. (2001)
put it, “to increase the utility of concept indexing of
medical documents, it is necessary to record whether
the concept has been negated or not”. They highlight
the need to detect negations in examples like “no ev-
idence of fracture”, so that an information retrieval
system does not return irrelevant reports.

A main goal of this research is to find out to which
extent a machine learning system can perform the
scope finding task. In order to do that, we choose
a memory-based learning algorithm. Memory-
based language processing (Daelemans and van den
Bosch, 2005) belongs to the class of lazy (as op-
posed to eager) learning methods, descendents of k-
nn statistical pattern matching. It is based on the
idea that NLP problems can be solved by reuse of
solved examples of the problem in memory, apply-
ing similarity-based reasoning on these examples in
order to solve new problems. As language process-
ing tasks typically involve many subregularities and
(pockets of) exceptions, it has been argued that lazy
learning is at an advantage in solving these highly
disjunctive learning problems compared to eager
learning, as the latter eliminate not only noise but
also potentially useful exceptions (Daelemans et al.,



1999). Memory-based algorithms have been suc-
cessfully applied in language processing to a wide
range of linguistic tasks, ranging from phonology
to semantic analysis. In this paper we show that
memory-based learning can also be applied to pre-
dicting the scope of negation.

The paper is organised as follows. In Section 2 we
summarise related work. In Section 3, we describe
the corpus with which the system has been trained.
In Section 4 we introduce the task to be performed
by the system, which is described in Section 5. The
results are presented and discussed in Section 6. Fi-
nally, Section 7 puts forward some conclusions.

2 Related work

Most research regarding negation in the biomedical
domain focuses on detecting if a medical term is
negated or not, whereas in this paper we focus on
detecting the full scope of negation signals.

Chapman et al. (2001) developed NegEx, a reg-
ular expression based algorithm for determining
whether a finding or disease mentioned within nar-
rative medical reports is present or absent. The re-
ported results are 94.51 precision and 77.84 recall.

Mutalik et al. (2001) developed Negfinder, a rule-
based system that recognises negated patterns in
medical documents. It consists of two tools: a lexi-
cal scanner called lexer that uses regular expressions
to generate a finite state machine, and a parser that
relies on LALR grammars. The reported results us-
ing independent negation detection are 95.70 recall
and 91.80 precision.

Sanchez-Graillet and Poesio (2007) present an
analysis of negated interactions in biological texts
and an heuristic-based system that extracts such in-
formation. They treat all types of negation: (i) Af-
fixal negation, which is expressed by an affix. (ii)
Noun phrase or emphatic negation, expressed syn-
tactically by using a negative determiner (e.g. no,
nothing). (iii) Inherent negation, expressed by words
with an inherently negative meaning (e.g. absent).
(iv) Negation with explicit negative particles (e.g.
no, not). The texts are 50 journal articles. The pre-
liminary results reported range from 54.32 F-score
to 76.68, depending on the method applied.

Elkin et al. (2005) describe a rule-based system
that assigns to concepts a level of certainty as part

of the generation of a two-phase dyadic parse tree.
First a preprocessor breaks each sentence into text
and operators. Then, a rule base decides if a concept
has been positively, negatively, or uncertainly as-
serted. The system achieves 97.20 recall and 98.80
precision.

The systems mentioned above are essentially
based on lexical information. Huang and
Lowe (2007) propose a classification scheme of
negations based on syntactic categories and patterns
in order to locate negated concepts, regardless of
their distance from the negation signal. Their hybrid
system that combines regular expression matching
with grammatical parsing achieves 92.60 recall and
99.80 precision.

Additionally, Boytcheva et al. (2005) incorporate
the treatment of negation in a system, MEHR, that
extracts from electronic health records all the infor-
mation required to generate automatically patient’s
chronicles. According to the authors “the nega-
tion treatment module inserts markers in the text for
negated phrases and determines scope of negation by
using negation rules”. However, in the paper there is
no description of the rules that are used and there
is no explanation about how the results presented
for negation recognition (57% of negations correctly
recognised) are evaluated.

Most of the above-mentioned research applies
rule-based algorithms to negation finding. Ma-
chine learning techniques have been applied in some
cases. Averbuch et al. (2004) developed an algo-
rithm to learn automatically negative context pat-
terns that uses information gain.

Golding and Chapman (2003) apply machine
learning techniques to distinguish whether a medi-
cal observation is negated by the word not. Their
corpus contains 207 selected sentences from hospi-
tal reports, in which a negation appears. They use
Naive Bayes and Decision Trees and achieve a max-
imum of 90 F-score. According to the authors, their
main finding is that “when negation of a UMLS term
is triggered with the negation phrase not, if the term
is preceded by the then do not negate”.

Goryachev et al. (2006) compare the perfor-
mance of four different methods of negation de-
tection, two regular expression-based methods and
two classification-based methods trained on 1745
discharge reports. They show that the regular



expression-based methods have better agreement
with humans and better accuracy than the classifica-
tion methods. Like in most of the mentioned work,
the task consists in determining if a medical term is
negated.

Rokach et al. (2008) present a new pattern-based
algorithm for indentifying context in free-text med-
ical narratives.The originality of the algorithm lies
in that it automatically learns patterns similar to the
manually written patterns for negation detection.

Apart from work on finding if a term is negated
or not, we are not aware of research that has focused
on learning the full scope of negation signals. This is
why we consider that the research presented in this
paper provides a new approach to the treatment of
negation scope in natural language processing.

3 Corpus

The corpus used is a part of the BioScope cor-
pus (Szarvas et al., 2008)1, a freely available re-
source that consists of medical and biological texts.
Every sentence is annotated with information about
negation and speculation, namely the boundaries of
the scope and the keywords, as shown in (1).

(1) PMA treatment, and <xcope id=“X1.4.1”><cue
type=“negation” ref=”X1.4.1”>not<cue> retinoic
acid treatment of the U937 cells</xcope> acts in
inducing NF-KB expression in the nuclei.

A first characteristic of the annotation of scope
in the BioScope corpus is that it is based on lin-
guistic principles: all sentences that assert the non-
existence or uncertainty of something are annotated,
in contrast to other corpora where only sentences
containing biomedical terms are annotated. A sec-
ond characteristic is that the annotation is extended
to the biggest syntactic unit possible.

The part used in our experiments are the biologi-
cal paper abstracts from the GENIA corpus (Collier
et al., 1999). This part consists of 1,273 abstracts
in 11,872 sentences. We discarded five sentences
due to annotation errors. The total number of words
used is 313,222, from which 1,739 are negation sig-
nals that belong to the different types as in described
in (Sanchez-Graillet and Poesio, 2007).

We processed the texts with the GENIA tag-
ger (Tsuruoka and Tsujii, 2005; Tsuruoka et al.,

1Web page: www.inf.u-szeged.hu/rgai/bioscope.

2005), a bidirectional inference based tagger that an-
alyzes English sentences and outputs the base forms,
part-of-speech tags, chunk tags, and named entity
tags in a tab-separated format. Additionally, we con-
verted the annotation about scope of negation into a
token-per-token representation.

Table 1 shows an example sentence of the cor-
pus that results from converting and processing the
BioScope representation. Like in the recent CoNLL
Shared Tasks, sentences are separated by a blank
line and fields are separated by a single tab charac-
ter. A sentence consists of tokens, each one starting
on a new line. A token consists of the following 10
fields:

1. ABSTRACT ID: number of the GENIA ab-
stract.

2. SENTENCE ID: sentence counter starting at 1
for each new abstract.

3. TOKEN ID: token counter, starting at 1 for
each new sentence.

4. FORM: word form or punctuation symbol.

5. LEMMA: lemma of word form.

6. POS TAG: Penn Treebank part-of-speech tags
described in (Santorini, 1990).

7. CHUNK TAG: IOB chunk tag produced by the
GENIA tagger.

8. NE TAG: IOB named entity tags produced by
the GENIA tagger.

9. NEG CUE: tokens that are negation signals are
marked as NEG. Negation signals in the Bio-
Scope corpus are single words, except for the
signal could not. After the tagging process the
signal cannot becomes also multiword because
the tagger splits it in two words. In these cases
we assign the NEG mark to not.

10. NEG SCOPE: IOB tags that indicate if a to-
ken is at the beginning of the negation scope
(B-NEG), in the remaining (I-NEG), or out (O-
NEG). These tags have been obtained by trans-
forming the xml files of BioScope. Each token
can have one or more NEG SCOPE tags, de-
pending on the number of negation signals in



10415075 07 1 NF-kappa NF-kappa NN B-NP B-protein B-NEG O-NEG
10415075 07 2 B B NN I-NP I-protein I-NEG O-NEG
10415075 07 3 binding binding NN I-NP O I-NEG O-NEG
10415075 07 4 activity activity NN I-NP O I-NEG O-NEG
10415075 07 5 was be VBD B-VP O I-NEG O-NEG
10415075 07 6 absent absent JJ B-ADJP O NEG I-NEG O-NEG
10415075 07 7 in in IN B-PP O I-NEG O-NEG
10415075 07 8 several several JJ B-NP O I-NEG O-NEG
10415075 07 9 SLE SLE NN I-NP O I-NEG O-NEG
10415075 07 10 patients patient NNS I-NP O I-NEG O-NEG
10415075 07 11 who who WP B-NP O I-NEG O-NEG
10415075 07 12 were be VBD B-VP O I-NEG O-NEG
10415075 07 13 not not RB I-VP O NEG I-NEG B-NEG
10415075 07 14 receiving receive VBG I-VP O I-NEG I-NEG
10415075 07 15 any any DT B-NP O I-NEG I-NEG
10415075 07 16 medication medication NN I-NP O I-NEG I-NEG
10415075 07 17 , , , O O I-NEG I-NEG
10415075 07 18 including include VBG B-PP O I-NEG I-NEG
10415075 07 19 corticosteroids corticosteroid NNS B-NP O I-NEG I-NEG
10415075 07 20 . . . O O O-NEG O-NEG

Table 1: Example sentence of the corpus BioScope converted into columns format

the sentences. The tags are separated by a blank
space and appear in the order of appearance of
the negation signals in the sentence.

4 Task description

We approach the scope finding task as a classifica-
tion task that consists of classifying the tokens of a
sentence as being a negation signal or not, and as
being inside or outside the scope of the negation sig-
nal(s) (as many times as there are negation signals
in the sentence). The information that can be used
to train the system is in columns 1 to 8 of Table 1.
The information to be predicted by the system is in
columns 9 and 10.

As far as we know, this way of approaching the
negation scope finding task is novel, whereas at the
same time it conforms to the well established stan-
dards of the recent CoNLL Shared Tasks2. By set-
ting up the task in this way we show that the negation
scope finding task can be modelled in a way similar
to semantic role labeling.

2Web page of CoNLL:
http://www.ifarm.nl/signll/conll/.

5 System description

In order to solve the task, we apply supervised ma-
chine learning techniques. We build a memory-
based scope finder, that tackles the task in two
phases. In the first phase a classifier predicts if a to-
ken is a negation signal, and in the second phase an-
other classifier predicts if a token is inside the scope
of each of the negation signals. The output of the
classifier is postprocessed applying a sequence opti-
misation algorithm.

We use the IB1 classifier as implemented in
TiMBL (version 6.1.2) (Daelemans et al., 2007), a
supervised inductive algorithm for learning classifi-
cation tasks based on the k-nearest neighbor classi-
fication rule (Cover and Hart, 1967). In IB1, sim-
ilarity is defined by computing (weighted) overlap
of the feature values of a test instance and a memo-
rized example. The metric combines a per-feature
value distance metric with global feature weights
that account for relative differences in discrimina-
tive power of the features.

5.1 Negation signal finding
In this phase, a classifier predicts if a word is a nega-
tion signal or not. The IB1 algorithm was parame-
terised by using overlap as the similarity metric, gain



ratio for feature weighting, using 7 k-nearest neigh-
bors. All neighbors have equal weight when voting
for a class. The instances represent all tokens in the
corpus and they have the following features:

• About the word: Word form, lemma, part of
speech, and chunk IOB tag.

• About the word context: Word form, POS, and
IOB tag of the three previous and three next
words. To obtain the previous word we per-
form a linear left-to-right search. This is how
previous has to be interpreted further on when
features are described.

5.2 Scope finding
In the first step of this phase, a classifier predicts if a
token is in the scope of each of the negation signals
of a sentence. The instances represent a combina-
tion of a negation signal and a token. This means
that all tokens in a sentence are combined with as
many negation signals as there are in the sentence.
For example, token NF-kappa in Table 1 will be rep-
resented in two instances as shown in (2):

(2) NF-kappa absent [features] B-NEG
NF-kappa not [features] O-NEG

Negation signals are those that have been classi-
fied as such in the previous phase. Only sentences
that have negation signals are selected for this phase.

The IB1 algorithm was parameterised by using
overlap as the similarity metric, gain ratio for feature
weighting, using 7 k-nearest neighbors, and weight-
ing the class vote of neighbors as a function of their
inverse linear distance.

The features of the scope finding classifier are:

• About the negation signal: word form, POS,
chunk IOB tag, type of chunk (NP, VP, ...), and
word form, POS, chunk IOB tag, type of chunk,
and named entity of the 3 previous and 3 next
words.

• About the combining word: word form, POS,
chunk IOB tag, type of chunk, named entity,
and word form, POS, chunk IOB tag, type of
chunk, and named entity type of the 3 previous
and 3 next words.

• About the tokens between the negation signal
and the word: Chain of POS types, distance in
number of tokens, and chain of chunk IOB tags.

• Others: Binary feature indicating if the word
and the negation signal are in the same chunk.
Location of the word relative to the negation
signal (pre, post, same).

In the second step of this phase, we apply a se-
quence optimisation algorithm in order to increase
the number of fully correct scopes. A scope is fully
correct if all tokens in a sentence have been assigned
their correct scope label for a given negation sig-
nal. The scope finding classifier can make predic-
tions that result in non-consecutive blocks of scope
tokens, whereas negation signals scope always over
a consecutive block of tokens. We observed that in
54.05% of the cases the predicted scopes of negation
were non-consecutive when running the system with
gold-standard negation signals. The function of the
algorithm is to output consecutive blocks of scope
tokens.

The algorithm that we apply checks first if the pre-
dicted signal is indeed in the scope of the negation.
If the signal is predicted to be out of the scope, the
algorithm overwrites the predicted scope annotation
in order to include the signal in its scope. Given the
position of the signal in the sentence, the algorithm
determines the starting and ending tokens of the con-
secutive block of predicted scope tokens that sur-
rounds the signal. Other blocks of predicted scope
tokens may still be predicted outside of this block,
but they are separated from the current scope, which
contains the signal, by tokens that have been pre-
dicted not to be in the scope of the negation. If the
tokens that have been predicted to be out of scope
are identified as noise (i.e. potentially wrong pre-
dictions), the algorithm should overwrite their anno-
tation and link separated blocks of scope together.
Apart from that, if the loose blocks of predicted
scope appear to be noise, the algorithm should over-
write their annotation marking them as being out of
scope.

Consider a sentence where the cue is in one block
of predicted scope of length k tokens. Suppose now
that there is another block of m consecutive tokens
that is predicted as scope, but that is separated from



the main scope block by l tokens which are pre-
dicted to be out of scope. If non-consecutive blocks
are near each other, i.e., if the number l of out-of-
scope tokens is sufficiently small in comparison with
the numbers k and m of scope tokens, then the in-
termediate tokens that have been predicted out of
scope could be considered as noise. In contrast, if
there are too many intermediate tokens that sepa-
rate two blocks of scope, then the additional block
of scope is probably wrongly annotated. Following
this logic, if l < α(k +m), with a specifically cho-
sen α, the intermediate out-of-scope tokens are re-
annotated as scope tokens, and the separated blocks
are connected to form one bigger block containing
the negation signal. Otherwise, the loose block of
scope is re-annotated to be out of scope. When the
main scope is extended, and more blocks are found
that are separated from the main scope block, the
algorithm reiterates this procedure until one consec-
utive block of scope tokens has been found. Depen-
dent on whether blocks need to be added before or
after the main scope block, we have observed in pre-
liminary tests that α = 0.2 for extending the main
scope block backward, and α = 0.3 for extending
the block further forward into the sentence provide
the best results.

6 Results

The results of the systems have been obtained by
performing 10-fold cross validation experiments.
The evaluation is made using the precision and re-
call measures (Van Rijsbergen, 1979), and their har-
monic mean, F-Measure. We calculate micro F1. In
the negation finding task, we consider that a nega-
tion token is correctly classified if it has been as-
signed a NEG class. In the scope finding task, we
consider that a token is correctly classified if all the
IOB tag(s) that it has been assigned are correct. This
means that when there is more than one negation sig-
nal in the sentence, the token has to be correctly as-
signed an IOB tag for as many negation signals as
there are. For example, token NF-kappa from Ta-
ble 1 reproduced in (3) will not be correct if it is
assigned classes I-NEG O-NEG or B-NEG I-NEG.

(3) 10415075 07 1 NF-kappa NF-kappa NN B-NP
B-protein B-NEG O-NEG

Additionally, we evaluated the percentage of fully
correct scopes (PCS).

6.1 Negation signal finding
We calculate two baselines for negation signal find-
ing. Baseline 1 (B1) is calculated by assigning the
NEG class to all the tokens that had no or not as
lemma. The F1 of the baseline is 80.66. Baseline
2 (B2) is calculated by assigning the NEG class to
all the tokens that had no, not, lack, neither, unable,
without, fail, absence, or nor as lemma. These lem-
mas account for 85.85 % of the negation signals.

Baseline Total Prec. Recall F1
B1 1739 90.42 72.80 80.66
B2 1739 89.77 93.38 91.54

Table 2: Baselines of the negation finding system.

Table 3 shows the results of the negation signal
finding system. With F1 94.40, it outperforms Base-
line 2 by 2.86 points.

Neg signals Total Prec. Recall F1
lack 88 100.00 100.00 100.00
neither 42 100.00 100.00 100.00
unable 30 100.00 100.00 100.00
without 83 100.00 98.79 99.39
nor 44 100.00 100.00 98.89
rather 19 95.00 100.00 97.43
not 1057 96.15 96.97 96.56
no 209 95.73 96.65 96.18
none 7 85.71 85.71 85.71
fail 57 79.36 87.71 83.33
miss 2 66.66 100.00 80.00
absence 57 67.64 80.70 73.60
failure 8 45.54 62.50 52.63
absent 13 42.85 23.07 30.00
could 6 66.66 33.33 44.44
either 2 0.00 0.00 0.00
impossible 1 0.00 0.00 0.00
instead 3 0.00 0.00 0.00
lacking 1 0.00 0.00 0.00
loss 1 0.00 0.00 0.00
negative 1 0.00 0.00 0.00
never 2 0.00 0.00 0.00
or 1 0.00 0.00 0.00
with 6 0.00 0.00 0.00
Overall 1739 94.21 94.59 94.40

Table 3: F scores of the negation finding classifier.

Precision and recall are very similar. Scores show
a clear unbalance between different negation signals.



Those with the lowest frequency are difficult to find.
Probably, this could be avoided by training the sys-
tem with a bigger corpus. Those with the highest
frequency are identified successfully.

Could appears as a negation signal because the
tagger does not assign to it the lemma can, but could,
causing the wrong assignment of the tag NEG to not,
instead of could when the negation cue in BioScope
is could not. This bug will be fixed in the next ver-
sion.

6.2 Scope finding
We provide the results of the classifier and the re-
sults of applying the scope sequence optimisation
algorithm to the output of the classifier.

Table 4 shows results for two versions of the
scope finding classifier, one based on gold standard
negation signals (GS NEG), and another (PR NEG)
based on negation signals predicted by the classifier
described in the previous section.

Prec. Recall F1 PCS
GS NEG 85.86 85.42 85.63 36.28
PR NEG 80.13 78.03 79.06 34.87

Table 4: Results of the scope finding classifier with gold-
standard (GS NEG) and with predicted negation signals
(PR NEG).

The F1 of PR NEG is 6.57 points lower than the
F1 of GS NEG, which is an expected effect. Pre-
cision and recall of GS NEG are very balanced,
whereas PR NEG has a lower recall than precision.
These measures are the result of a token per token
evaluation, which does not guarantee that the com-
plete sequence of scope is correct. This is reflected
in the low percentage of fully correct scopes of both
versions of the classifier.

In Table 5, we present the results of the system
after applying the scope sequence optimisation al-
gorithm.

Prec. Recall F1 PCS
GS NEG 88.61 77.89 82.92 55.49
PR NEG 80.94 81.59 81.26 50.80

Table 5: Results of the system with gold-standard (GS
NEG) and with predicted negation signals (PR NEG) af-
ter applying the scope sequence optimisation algorithm.

Scope tags Total Prec. Recall F1
O-NEG 29590 86.77 85.96 86.36
B-NEG O-NEG O-NEG 3 75.00 100.00 85.71
B-NEG 1423 82.48 84.04 83.25
O-NEG O-NEG O-NEG 46 100.00 81.50 81.22
I-NEG 11567 72.97 78.36 75.57
O-NEG O-NEG 2848 83.51 68.15 75.05
B-NEG O-NEG 108 70.43 75.00 72.64
B-NEG B-NEG 32 100.00 56.25 72.00
I-NEG O-NEG O-NEG 17 54.83 100.00 70.83
I-NEG I-NEG 638 62.44 65.67 64.01
O-NEG B-NEG 100 78.12 50.00 60.97
O-NEG I-NEG 691 68.89 50.65 58.38
I-NEG O-NEG 884 42.41 66.06 51.65
B-NEG B-NEG O-NEG 3 100.00 33.33 50.00
O-NEG I-NEG I-NEG 37 100.00 18.91 31.81
I-NEG I-NEG O-NEG 66 42.00 24.00 31.00
I-NEG I-NEG I-NEG 20 26.92 35.00 30.43
I-NEG B-NEG 13 14.00 53.84 22.22
B-NEG I-NEG 1 0.00 0.00 0.00
I-NEG B-NEG B-NEG 1 0.00 0.00 0.00
I-NEG I-NEG B-NEG 1 0.00 0.00 0.00
O-NEG B-NEG B-NEG 2 0.00 0.00 0.00
O-NEG O-NEG B-NEG 2 0.00 0.00 0.00
O-NEG O-NEG I-NEG 12 0.00 0.00 0.00
Overall 48105 80.94 81.59 81.26

Table 6: F scores and percentage of correct scopes (PCP)
of the system after applying the scope sequence optimi-
sation algorithm.

The most remarkable result is the 30.15 and 24.43
error reduction in the percentage of fully correct
scopes of GS NEG and PR NEG respectively, which
shows that the algorithm is efficient for this corpus.

Also interesting is the increase in precision of GS
NEG. Aiming at high precision in negation finding
systems is desirable, since extracting as negated in-
formation that is not negated can have negative ef-
fects, especially in the biomedical domain, where
information extraction systems might be used to fill
in medical reports about patients. However, apply-
ing the algorithm causes a decrease in recall of 7.53
points. The application of the algorithm provokes a
trade-off between precision and recall. However, we
consider that having a higher percentage of correct
scopes is more important than having a higher F1 in
a token per token evaluation.

As for PR NEG, the application of the algorithm
causes a moderate increase in recall, while keeping
the precision at a very similar level.

Table 6 shows deailed results of the system based
on predicted negation signals after applying the



scope sequence optimisation algorithm. Classes O-
NEG, B-NEG, and I-NEG are among the most fre-
quent and get high scores. Classes that are com-
posed of three tags are more difficult to predict with
scores under the 50 F1, except for O-NEG O-NEG
O-NEG. Less frequent classes tend to be less pre-
dictable.

Neg signals Total Correct PCS
without 82 58 70.73
no 211 137 64.92
rather 20 12 60.00
not 1066 569 53.37
neither 42 19 45.23
none 7 3 42.85
lack 87 31 35.63
fail 63 21 33.33
missing 3 1 33.33
absent 7 2 28.57
nor 43 11 25.58
absence 68 17 25.00
unable 30 6 20.00
failure 11 0 0.00
could 3 0 0.00
negative 1 0 0.00
never 1 0 0.00
box 1 0 0.00
Overall 1746 887 50.80

Table 7: Information about Percentage of Correct Scopes
(PCS) per negation signal.

Table 7 shows information about the percentage
of correct scopes per negation signal after applying
the algorithm. The negation signals listed are the
ones predicted by the classifier that predicts negation
signals. This explains the presence of box in the list,
which is an incorrect prediction.

The signal with the highest percentage is with-
out, followed by no, rather and not, which are above
50%. It would be interesting to investigate how the
syntactic properties of the negation signals are re-
lated to the percentage of correct scopes, and how
does the algorithm perform depending on the type
of signal. Nouns and adjectives expressing negation
tend to have a lower percentage than adverbs.

7 Conclusions

In this paper we have presented a machine learning
system that finds the scope of negation in biomedical

texts. The system consists of two memory-based en-
gines, one that decides if the tokens in a sentence are
negation signals, and another that finds the full scope
of the negation signals. The first engine achieves
94.40 F1, and the second 79.06. However, the evalu-
ation in terms of correct scopes shows the weakness
of the system. This is why a sequence optimisation
algorithm is applied. The algorithm achieves an er-
ror reduction of 24.43, with 50.80 % of fully correct
scopes. Although there is room for improvement,
the results suggest that machine learning techniques
are suited for tackling the task.

We have highlighted the fact that our approach to
negation detection focuses on finding the scope of
negation signals, instead of determining whether a
term is negated or not, and on appliying supervised
machine learning techniques. As far as we know,
this approach is novel.

Additionally, we have shown that negation find-
ing can be modelled for natural language processing
purposes in a way similar to other linguistic tasks
like semantic role labeling. In our model, scope find-
ing is represented as a classification task that con-
sists of classifying the tokens of a sentence as be-
ing a negation signal or not, and as being inside or
outside the scope of the negation signal(s) (as many
times as there are negation signals in the sentence).

Further research should be carried on in several
directions. In the first place, the fact that most nega-
tion scopes coincide with boundaries of chunks sug-
gests that scope could be predicted chunk per chunk
instead of token per token. Secondly, other machine
learning algorithms should be integrated in the sys-
tem in order to optimise performance. Thirdly, the
system should be tested in different types of biomed-
ical texts, like full papers or medical reports to check
if the system is robust. Fourthly, research about se-
quence optimisation could lead to improvements in
the algorithm. Finally, the data should be qualita-
tively analysed in order to find explanations for the
upper boundaries of the system.
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